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Effect of van der Waals surface interactions on wetting transitions in polymer blends
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We examine the effect of van der Waals type interactions between the surface and monomers on wetting
transitions in polymer blends. Using a Monte Carlo method we find that as long as the effective range of the
van der Waals interaction is much smaller than the size of the polymers the transition may be described by a
short range model. However, when the range of the interaction becomes comparable to the polymer size it can
affect both the polymer density profile and the order of the wetting trans|t&#063-651X96)05809-4

PACS numbds): 68.45.Gd, 36.20-r, 68.10—m

[. INTRODUCTION these interactions could account for the discrepancy between
experimentally measured resu(t8] and theoretical results
There have recently been a number of theoretical studiglsl], Joneqd8] concluded that they could not. From studies of
[1-6] that investigate the order of wetting transitions in poly- simple fluids[10], it has been shown that the presence of van
mer blends at a solid surface that favors one of the phases tter Waals interactions can change the order of the wetting
the blend. If the width of the thimicroscopi¢ wetting film  transition. Thus it is certainly valuable to study the effect of
that forms at the solid surface increases uniformly to a thickhese interactions on polymer blends. Numerical simulations
(macroscopiglayer the transition is commonly referred to as using microscopic models provide an efficient method for
second order, while if this increase has a jump it is termedsuch a study.
first order. In these theoretical studigk—6] it is assumed Here a Monte Carlo technique is employed to study the
that the interaction between the solid surface, or wall, angroblem. The bond fluctuation modéll] is used to simulate
the monomers may be adequately described by a short rangelymer chains on a simple cubic lattice of dimensior L
model. For example, in the mean field study of Schmidt and<H. The polymers can interact with the walls of sizeL
Binder[1] the perturbing effect of the wall is modeled by an located atz=0 andz=H+1 and with other polymers. We
additional contribution to the free energy called the “bareconsider a symmetrical mixture with each chain havihg
surface free energy.” The bare surface free energy is givemonomers. Polymers are either of tyfeor type B with an
by interaction energy given by

f2(p1)=—p1p1—39p3, (D)
) E=—e3 didi—e biddi—Dui(2), O
where p, is the concentration of the preferred phase at the 7 '

wall, w, is the surface chemical potential difference, and

represents the change in monomer-monomer interactions dyd1€ré ¢ is the occupation variable of siie(A: monomer,

to the wall. ¢=—1, a_nd B: monomer,_(ﬁ,=1), €is the monomer-
However, the surface interaction between the monomer80NOMer interaction, and, is the magnitude of the wall-

and the wall arises not only from short range interactions buflonomer interaction at the wall. The van der Waals interac-

also from van der Waals type interactions due to dipoletion iS given by

dipole forces between molecules in the walls and the mono-

mers. Chen, Noolandi, and 1z£3] and Jone$8] used mean )1 if z<os

field methods to investigate how the surface enrichment pro- vi(2)= (04/2)® if >0, )
file was modified in the presence of the van der Waals inter-

actions. In both studies a potential of the form where ¢ is a range parameter for the interaction. A large

corresponds to an interaction that can be felt a long way from
@) the wall. Note that we only consider a short range interaction
between monomers; i.e., only monomers that are less than
three units apart are considered to have a nonzero interaction
was used to represent the van der Waals interaction. Hereenergy. Since it is known that the van der Waals interaction
represents the distance from the wall to the monomer. Thibetween monomers decays much more rapidly than in Eg.
potential is given by the integral of the attractive part of the(4) (i.e., the exponent is 6 rather thapwe feel this assump-
Lennard-Jones potential over the area of the walls. Whilgion is justified. We also use a short range model to compare
Chen, Noolandi, and 1zzp7] suggested that the presence of results. This model is given by Eq@) and(4) but with the
restriction thato,=1.0 and forz>1.0 the interaction is zero.
We initially fill the lattice with theA-phase polymers up to a
*Electronic address: geraldp@alpha2.cz3.nus.sg volume fraction of 0.5, which represents a dense polymer
"Electronic address: cscwjs@leonis.nus.sg melt. We then increase the surface chemical potential

U(Z)“Eg
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FIG. 1. B-phase density at the walls for a number of different  FIG. 2. Surface excess density for a number of different range
range parameters, short rang®), o;=1.0 (W), 0;=1.3(¢), 1.4  parameters, short rand®), os=1.0 (W), 0s=1.3 (O), 1.4 (A),
(A), 1.47(Q), 1.5(%), 1.7(X), 2.0(>), and 2.4(O). Curves are  1.47 (<), 1.5 (%), 1.7 (X), 2.0 (>), and 2.4(O).
only drawn as guides for the eye.
short range model simulated here, a second order transition
(=€,/e) in favor of theB-phase polymers. ThB-phase den- is always obtained. For the smaller values &f we still
sity profile pg is then given by obtain a continuous increase in bgthandI'. As the value
of oy is increased, the nature of the transition changes. For

2 the larger values ofg, bothp, andI” exhibit a finite jump at

pe(z+1/2)= 17 (Ng(2) +Ng(z+1) the wetting transition poini$. This is indicative of a first
order transition. Thus by increasing the range parameter of
+Ng(H—2)+Ng(H-z+1)), (5)  the van der Waals interaction, the second order wetting tran-

sition changes to a first order transition. To accurately locate

where the angular brackets denote a Monte Carlo averagge pointos where the transition changes order, we have also
andNg(2) is the number oB-phase monomers in the plane Calculated the surface layer susceptibiliy;, which is just

z lattice spacings from the wall a&=0. Since both walls dpi/du;. This quantity is given by the fluctuation relation
have the same interaction the density is symmetrical about 16

z=H/2. Due to the fact that in the bond fluctuation model no _ 2 2

two monomers can be less than two lattice spacings apart, we keTx11={2 [(N&(1)%)=(N&(1))"]. @
average the density over two adjacent layers. We denote the

density of theB phase in the layers adjacent to the wallsFor a second order transitiog;, increases smoothly up to
pe(3/2) by p;. We also calculate the surface excess densitjts maximum value aj{. As oy increases tar this maxi-

T, given by mum value increases. In mean field theory at the tricritical
point[1], where the transition changes from second order to
H/2 first order, y;1=0. For a first order transitiog,; exhibits a
r= 2 [pe(z+1/2)— p()], (6) S-function jump atu§ [1]. In the neighborhood of the tric-
z=1

ritical point, on the second order side, we therefore numeri-

cally observe a rather sharp maximum yg,, which is a
wherep(«) is theB-phase density in the layers in the middle precursor of the critical divergence a€. (See Fig. 3. By
layers of the lattice, or the bulk density. The surface excessarefully analyzingp,, I', and x;; we estimate the value of
density is a measure of the thickness of the wetting film. AnoS for the caseN=5 andkgT/e=8 [p(*)~0.017] to be 1.48
important consideration in carrying out the simulations is+0.02.
how largeH has to be to simulate a bulk system. To do this Now we consider how the chain size affects the order of
we have carefully monitored the density in the middle layersthe wetting transition. To do this we have run simulations for
of the lattice and ensured that this density does not varyhe casesN=10 (lattice dimensionsL=90, H=70) and
during the simulation. Consequently we can be sure that thel=15 (lattice dimensiond. =90, H=90), but we have kept
results are indicative of a bulk system and so the walls mayhe bulk concentration at 0.017. For the calle=10,
be considered infinitely far apart. Further details of the simukgT/e=15 we find o{=1.61+0.02 while for N=15,
lation technique may be found in RéB]. kgT/e=21.7 we findo=1.69+0.03. Thus as the size of the

Figures 1 and 2 show the results for the cake5 and  polymers increases;S correspondingly increases. This is to

kgT/e=8 for a variety of range parameters. For this simu-  be expected since the perturbing effect of the wall is felt less
lation we used lattices of dimensian=90 andH =60. (Note  and less as one moves further away from the surface. We
for all the figures in this paper the quantities plotted arehave also run simulations at a lower bulk concentration of
dimensionles$.The rightmost curves correspond to the short0.004. In this case it is know{6] that the polymers are less
range model. It is known from previous wolr&] that for the  elongated than at the higher concentration of 0.017. The val-
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FIG. 3. Surface layer susceptibility on the second order side for FIG. 5. B-phase density profile for various range parameters,
different range parameters, short rar{@®, o=1.0 (W), 1.3(¢0),  N=5,kgT/e=6 (p..=0.009 for the short range mod¢D), os=1.0
1.45(+), 1.47 (<), 1.49(00), and 1.5(%). (0), 1.5(A), and 2.0(%). Inset magnifies region near the wall.

ues of o< at this lower concentration are estimated to beof the phase diagram in Fig. 4. In this case the short range
0=1.03+0.02 for N=5, kgT/e=6 (lattice dimensions interaction _should provide an adequate model for the physi-
L=90, H=50), ¢=1.10+0.02 for N=10, kgT/e=11 (lat-  cal interaction. _
tice dimensionsL=90, H=60), and ¢$=1.23+0.03 for The surface enrichment profile due to the preference of
N=20, kg T/e=20.4 (lattice dimensiong. =90, H=80). the B-phase polymers at the wall is shown in Fig. 5 for a
Once again we notice that & increasess increases. number of different range parameters. TBephase wetting
Also the effect of decreasing the bulk concentration, or temfilm has formed completely at the walls. In Fig. 5 the density
perature, decreases the values§f This is because, as men- Profile is shown for the casi=5, kg T/e=6. Far away from
tioned above, decreasing the bulk concentration causes tfie Wall, for all the cases, the density converges to the bulk
chains to become less elongated, on average, and so the vdgnsity. Close to the wall there are oscillations in the density
der Waals interaction is much m,ore dominan,t than for the&rofiles that are due to the nature of the bond fluctuation

longer chains. Although our chains are quite short, rangin in%?ﬁ:; ;232?8 g?ﬂg?gOsnSﬁe‘;\gC:e;rs\/;:ioa;guiﬂdof'ﬂlaﬁggé
from 5 to 20 monomers only, compared to real polymer b

blends[8,9] whereN is of the order of 1) we believe our models of polymers, reflect the random dense packing of the

L . monomers near the walls. Fei;=1.0 there is not a great
results are still indicative of _real systems. By this we mearyjitrarence in the profile from the short range model. How-
that we should observe a similar increasesipasN or T

, , ) ; ever, aso, increases it can be seen that the gradient of the
increases. In Fig4 a phase diagram, in the-os plane, gensity profile at the wall becomes less steep so that the
concentration is given. In a real system for a given wall-js more clearly seen in the inset where we magnify the region
polymer pairing the range parameter of the van der Waalsear the wall. This characteristic of the van der Waals inter-
interaction is fixed. Given that the chain lengths are muchaction has been observed before experimen{@lyand in
longer than length scale of the van der Waals interaction weheoretical modeld7,8]. Similar density profiles are ob-
would expect that we would fall in the top left-hand corner served for all the other chain lengths and temperatures.

It is therefore concluded from our results that as long as
the effective range of the van der Waals interaction is much
smaller than the size of the chains the short range model
should be a good approximation to the real physical interac-
tion between the wall and the polymers. When the range of
the interaction becomes comparable to the size of the poly-
mers there are significant deviations in the density profile
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sufficiently large it can affect the order of the wetting tran-
sition, that is from a second order wetting transition to a first
order transition. However, for experimental systems where
the degree of polymerization is large 10 [8,9], we would
expect the short range model to be sufficient to model the
polymer-wall interaction.
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